The integral representation ring of a finite group.

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Free Groups and Subgroups of Finite Index in the Unit Group of an Integral Group Ring∗

In this article we construct free groups and subgroups of finite index in the unit group of the integral group ring of a finite non-abelian group G for which every non-linear irreducible complex representation is of degree 2 and with commutator subgroup G′ a central elementary abelian 2-group.

متن کامل

Integral Group Ring of Rudvalis Simple Group

Using the Luthar–Passi method, we investigate the classical Zassenhaus conjecture for the normalized unit group of the integral group ring of the Rudvalis sporadic simple group Ru. As a consequence, for this group we confirm Kimmerle’s conjecture on prime graphs.

متن کامل

Integral Group Ring of the First Janko Simple Group

We investigate the classical Zassenhaus conjecture for the normalized unit group of the integral group ring of the simple Janko group J1. As a consequence, for this group we confirm Kimmerle’s conjecture on prime graphs.

متن کامل

Integral Group Ring of the Suzuki Sporadic Simple Group

Using the Luthar–Passi method, we investigate the classical Zassenhaus conjecture for the normalized unit group of the integral group ring of the Suzuki sporadic simple group Suz. As a consequence, for this group we confirm the Kimmerle’s conjecture on prime graphs.

متن کامل

Integral Group Ring of the Mclaughlin Simple Group

We consider the Zassenhaus conjecture for the normalized unit group of the integral group ring of the McLaughlin sporadic group McL. As a consequence, we confirm for this group the Kimmerle’s conjecture on prime graphs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Michigan Mathematical Journal

سال: 1965

ISSN: 0026-2285

DOI: 10.1307/mmj/1028999240